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Fig. 1. Our intrinsic 𝐿1 smoothness energy constructs piecewise smooth functions. Unlike 𝐿2 energies, which fit a smooth function without any ridges to solve
an interpolation problem (and thus have to hallucinate a saddle), we construct a piecewise flat function (left). When denoising, our discretization produces
clean isolines compared to previous, non-intrinsic approaches (center). Our 𝐿1 energy can construct sparse cut indicator functions to segment meshes (right).

The 𝐿1 Hessian energy measures the norm of the Hessian of a function on
a surface (and not the squared norm, as is common with many geometry
applications that employ 𝐿2). Its minimizers tend to be locally linear with
a sparse set of curved ridges. We introduce a fully-intrinsic discretization
of this energy for triangle meshes and show that it can be optimized using
off-the-shelf conic program solvers. We apply it to stylization, denoising,
interpolation, hole-filling, and segmentation tasks. Our 𝐿1 approach exhibits
multiple important differences from its more-familiar 𝐿2 counterpart: it
preserves ridge-like features in the input, it naturally incorporates a flatness
prior for reconstruction, and, at its extreme, it distills its input to an abstract,
angular form.

CCS Concepts: • Computing methodologies→ Computer graphics; Mesh
geometry models; •Mathematics of computing→ Partial differential
equations.
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1 INTRODUCTION
Many tasks in geometry processing can be formulated as an opti-
mization problem involving a smoothness energy on a surface Ω,
such as interpolation, denoising, or hole-filling. The optimization
problem’s goal is to find the smoothest function fulfilling some
constraint. These smoothness energies are usually 𝐿2 derivative
energies, i.e., they integrate the square of derivatives of a function,
such as the Laplacian and Hessian energies [Stein et al. 2018b]

𝐸Δ2 (𝑢) = 1
2

∫
Ω
|Δ𝑢 |2 𝑑𝑥 , 𝐸H2 (𝑢) = 1

2

∫
Ω
∥H𝑢 ∥2 𝑑𝑥 , (1)
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where ∥·∥ is the Euclidean or Frobenius norm.
These 𝐿2 energies will find the smoothest overall solution to

a given problem, but will fail when the goal is to obtain a piece-
wise smooth function, since the ridges between smooth regions are
heavily penalized by the square integral (see Fig. 2).

The 𝐿1 norm, on the other hand, is a well-known tool for sparsify-
ing functions (see, e.g., [Bruckstein et al. 2009]). An 𝐿1 optimization
will reduce the value of a function overall, but allow for spikes in
measure-zero regions of the surface, leading to the concentration of
features on a few ridges (curves with gradient discontinuities in the
normal direction). This behavior can be used to sharpen and sparsify
functions on surfaces. Not every 𝐿2 smoothness energy can be used
as an 𝐿1 energy, however. The vertex-based discretization of the
Laplacian energy 𝐸Δ2 , for example, leads to noisy results if naively
transformed into an 𝐿1 energy by simply changing the exponent of
the integral [He and Schaefer 2013].

We present an 𝐿1 smoothness energy based on the surface Hessian
of a function that generalizes the flat 𝐿1 Hessian energy of Stein
et al. [2018b] to curved surfaces,

𝐸H (𝑢) =
1
2

∫
Ω
∥H𝑢 ∥ 𝑑𝑥 . (2)

Our 𝐿1 Hessian energy creates smooth results without influence
from the boundary of the domain, like its 𝐿2 counterpart, but it
constructs piecewise smooth results. This allows it to be used in a
variety of applications where the global smoothness of 𝐿2 energies
is not desirable, such as to interpolate/denoise data that is known
to be only piecewise smooth (like distance functions), to fill holes of
shapes with sharp features, and to sparsify functions on surfaces.We
also introduce an intrinsic discretization of the 𝐿1 Hessian energy
for triangle meshes and its accompanying optimization problem,
as existing discretizations are either not intrinsic or not 𝐿1. Our
discrete operator depends only on the edge lengths of the triangles,
and the resulting minimization problem can be efficiently solved by
any conic solver.
Our energy can be plugged into any constrained quadratic ge-

ometry processing optimization problem to encourage piecewise
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Fig. 2. Denoising a heightfield reminiscent of Stein et al. [2018b]’s Fig. 16.
The 𝐿2 energy 𝐸H2 smooths out sharp ridges. An 𝐿1 energy based on an
anisotropic edge Laplacian [He and Schaefer 2013] leads to slightly better
results. The 𝐿1 Hessian energy 𝐸H reconstructs a cathedral with sharp ridges.

smooth results with sparse, sharp ridge features. In this article we
apply it to a wide variety of geometry processing tasks: (1) scattered
data interpolation, (2) denoising, (3) hole-filling, (4) piecewise flat
stylization, (5) mesh segmentation, and (6) automatic drawing of
diffusion curves. Furthermore, we provide a generalized analysis
of our operator on surfaces, analyze its low-frequency modes, and
showcase how its minimizers differ from those of 𝐿2 energies. Our
𝐿1 Hessian energy is a useful addition to any general-purpose geom-
etry processing toolbox alongside existing 𝐿2 smoothness energies.

2 RELATED WORK
Our work, the discussion of an 𝐿1 Hessian smoothness energy, its
discretization, and its applications, is related to multiple old research
topics in image and geometry processing: smoothness energies, 𝐿1

norms, and the discretization of non-scalar functions on surfaces.

2.1 Smoothness energies
Common smoothness energies include the squared 𝐿2 norm (or
square integral) of the gradient ( 1

2
∫
Ω ∥∇𝑢∥

2 𝑑𝑥) or the Laplacian
( 1

2
∫
Ω |Δ𝑢 |

2 𝑑𝑥) of a function. Smoothness energies have many ap-
plications, e.g., in surface fairing [Desbrun et al. 1999], scattered
data interpolation [Jacobson et al. 2012], data smoothing [Weinkauf
et al. 2010], cartoonization [Sýkora et al. 2014], and computing
skinning weights for animation [Baran and Popović 2007]. Higher-
order smoothness energies (such as those featuring the Laplacian)
are preferred over low-order smoothness energies (featuring the
gradient) in interpolation and smoothness applications where a
very smooth result without spiky artifacts is desired, for example at
constraints [Jacobson et al. 2011], or in surface flows [Crane et al.
2013]. Such higher-order energies require a choice of boundary
condition. Beyond the popular zero Neumann conditions, one can
choose, e.g., natural Hessian boundary conditions [Stein et al. 2018b,
2020a] arising from the minimization of a different higher-order
energy measuring the squared 𝐿2 norm of the Hessian of a function
( 1

2
∫
Ω ∥H𝑢 ∥2 𝑑𝑥 ). Our smoothness energy is a generalization of the

Hessian smoothness energy of Stein et al. [2018b].

2.2 𝐿1 norms
The work of Stein et al. [2018b] not only features an 𝐿2 Hessian en-
ergy, but also an 𝐿1 Hessian energy. 𝐿1 norms measure the integral
of the norm of a function instead of the integral of its square, and
they tend to encourage sharp ridges and sparse structures. Their

stylize denoise hole-fill

Fig. 3. Shapes with sharp ridges are preferred by our 𝐿1 Hessian energy 𝐸H.
When stylizing (left), the cube is preserved; when denoising (center), the cube
is restored; and when hole-filling (right), the cube’s ridge is reconstructed.

input inputours ours

Fig. 4. 𝐸H can be used in a flow to stylize a surface to appear piecewise flat.
As the norm of the Hessian decreases (top row), the Gaussian curvature
(visualized by the scaled angle defect, bottom row) concentrates on ridges.

affinity for ridges makes them a popular tool in image processing,
where they preserve sharp image features during operations such as
denoising better than 𝐿2 approaches [Bergounioux and Piffet 2010;
Chambolle and Lions 1997; Chan et al. 2007; Fu et al. 2006; Lysaker
et al. 2003; Lysaker and Tai 2006; Steidl 2006; Steidl et al. 2005; You
and Kaveh 2000; Yuan et al. 2009]. In geometry processing, 𝐿1 norms
have been employed, among other things, for surface reconstruction
[Avron et al. 2010; Lai et al. 2013], for surface registration [Achen-
bach et al. 2015], to fracture objects [Sellán et al. 2023], to construct
polycubes [Huang et al. 2014; Li et al. 2021; Zhang et al. 2020], to
encourage sparsity in barycentric coordinates [Zhang et al. 2014],
and to denoise surfaces [He and Schaefer 2013; Wu et al. 2015]. Of
special interest is the recent work of Liu et al. [2019] who employ
𝐿1 norms of Laplacians that are, like our method, a generalization
of image processing 𝐿1 smoothing approaches to triangle meshes.
Additionally, Bronstein et al. [2016] propose a higher-order dis-
cretization and optimization procedure for the continuous 𝐿1 norm
on manifolds.

2.3 Discretizing vectors and matrices on surfaces
The Hessian is a matrix, and cannot be intrinsically discretized using
usual scalar methods like Lagrangian finite elements (which is why
the discretization of [Stein et al. 2018b] using coordinate-wise scalar
functions is not intrinsic). There are many ways to discretize differ-
entiable vector and matrix fields intrinsically on triangle meshes. We
extend an approach of Grinspun et al. [2006, (4)] to 𝐿1 optimization,
where vectors and matrices are based on faces, and the differentia-
tion of a vector field happens over edges. Alternative approaches
include the application of discrete exterior calculus [de Goes et al.
2014; Fisher et al. 2007], finite elements [Boksebeld and Vaxman
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Fig. 5. The lowest six eigenmodes of 𝐸H2 and 𝐸H on a flat shape (left) and a curved surface (right). While linear functions are the lowest modes for both flat
examples, the 𝐿1 energy exhibits sharp ridges that are not present in the 𝐿2 modes.

2022; Djerbetian 2016; Knöppel et al. 2013; Stein et al. 2020b], subdi-
vision surfaces [Custers and Vaxman 2020; de Goes et al. 2016], and
other discretization strategies [Knöppel et al. 2015; Liu et al. 2016;
Sharp et al. 2019b]. Walker [2024] approximates the shape operator
on triangle meshes using a Hellan–Herrmann–Johnson-element-
based discretization of the surface Hessian.

3 BACKGROUND
Our domain is a smooth two-dimensional surface Ω. The gradient
of a scalar function 𝑢 on Ω, ∇𝑢, is a vector field on Ω. The covariant
derivative of a vector field v on Ω, ∇v, is a (1, 1) tensor field on
Ω. This is a generalization of a matrix field to curved surfaces: A
(1, 1) tensor can be interpreted as a map that takes a tangent vector
to another tangent vector [Petersen 2006]. The Hessian of a scalar
function 𝑢 is the covariant derivative of its gradient [Petersen 2006],

H𝑢 = ∇∇𝑢 , (3)

and is a symmetric tensor when written in an orthonormal basis
with respect to the Riemannian metric 𝑔.

This Hessian is the curved surface analog of the well-known
matrix of partial derivatives in R2. For orthonormal1 coordinates
𝑋,𝑌 on Ω, the Hessian can be written as

H𝑢 (v) ·w = w⊺
(
𝜕𝑋 𝜕𝑋𝑢 𝜕𝑌 𝜕𝑋𝑢

𝜕𝑋 𝜕𝑌𝑢 𝜕𝑌 𝜕𝑌𝑢

)
v . (4)

The metric-induced norm of (1, 1) tensors on Ω is defined via the
trace. For a tensor 𝑆 ,

∥𝑆 ∥ =
√︁

trace (𝑆∗𝑆) , (5)

where 𝑆∗ is the adjoint of the tensor 𝑆 with respect to the metric 𝑔.
For matrices, this is also known as the Frobenius norm,(𝑆11 𝑆12

𝑆21 𝑆22

)
F
=

√︃
𝑆2

11 + 𝑆
2
12 + 𝑆

2
21 + 𝑆

2
22 . (6)

The Hessian H𝑢 measures all second-order variation of a function,
and its norm ∥H𝑢 ∥ quantifies this change. Unlike the Laplacian Δ𝑢,
the norm of the Hessian detects all second-order variation: E.g.,
|Δ(𝑥2 − 𝑦2) | = 0, but ∥H𝑥2−𝑦2 ∥ = 2

√
2.

1For non-orthonormal coordinates, one might have to consider additional cross-terms.

3.1 𝐿𝑝 norms
The 𝐿𝑝 norm of a function 𝑢 on Ω is defined via the integral

∥𝑢∥𝑝 =

(∫
Ω
∥𝑢 (𝑥)∥𝑝 𝑑𝑥

) 1
𝑝

, (7)

where the norm ∥𝑢 (𝑥)∥ inside the integral is the absolute value of a
scalar, or the metric-induced norm of vectors and tensors.
The 𝐿1 and 𝐿2 norms have a variety of interesting properties

relevant to optimization applications. It holds true by Hölder’s in-
equality that, on compact domains,

∥𝑢∥1 ≤
√︁

area(Ω)∥𝑢∥2 . (8)

This means that, in a sense, the 𝐿1 norm is more permissive than
the 𝐿2 norm: Functions that have a small 𝐿1 norm can have a large
𝐿2 norm, but not the other way around. A good example of this on
(0, 1) ⊆ R is the function 𝑢 (𝑥) = 𝑥−

1
2 :

∥𝑢∥1 =

∫ 1

0
𝑥−

1
2 𝑑𝑥 = 2 , ∥𝑢∥2 =

(∫ 1

0

1
𝑥
𝑑𝑥

) 1
2
= ∞ . (9)

This means that 𝐿2 norms will discourage functions that have even
very small unbounded segments, while 𝐿1 norms will allow func-
tions that are unbounded on small parts of the domain. Measuring
the 𝐿2 norm of the second derivative of a function approaching a
simple ridge on Ω (which is unbounded) produces a massive penalty
on that ridge, and the optimization results in a rounding-off of that
ridge immediately. 𝐿1 does not penalize unbounded functions on
sparse line segments as much, and will balance them with other
parts of the function, thus optimizing the 𝐿1 norm will preserve and
even encourage the formation of sparse ridges (see Fig. 1). Hölder’s
inequality holds for subsets of Ω as well, suggesting that minimizers
of the 𝐿1 norm can be upper bounded by a local area-reweighing of
the 𝐿2 norm which permits large norm values as long as they only
exist over small-area regions of the domain.
Furthermore, the 𝐿1 norm is also well-known as a tool for en-

couraging sparsity when it is used to approximate an actual sparsity
norm that measures the area where a function is nonzero. These
norms are difficult to approximate, but it can be shown that in some
cases solving an 𝐿1 optimization problem will also produce sparse
results [Candès et al. 2008].

Other uses of the term 𝐿1. Some use the term 𝐿1 to describe the
𝑙1 norm of vectors. In contrast to the Euclidean norm ∥

( 𝑥
𝑦

)
∥ =√︁

𝑥2 + 𝑦2, the 𝑙1 vector norm is |𝑥 | + |𝑦 |. We never use the 𝑙1 norm
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ground truth [Stein et al.
2018b]

our

Fig. 6. A ground truth function is sampled at the red points (left). These sam-
ples are then used for scattered data interpolation. The 𝐿2 energy smooths
out the sharp ridges of the ground truth (center left), while Stein et al. [2018b]
shows axis alignment artifacts. Our 𝐿1 energy reconstructs the sharp ridge.

on any pointwise vectors or matrices in this article, and we only use
the terms 𝐿1 and 𝐿2 to refer to integrated quantities (or discretized
quantities that are summed over a mesh). Some refer to integrals of
the 𝑙1 norm of vectors as 𝐿1,1 norms, and integrals of the Euclidean
norm of vectors as 𝐿2,1 norms. These terms are not relevant to us,
as we only ever encounter the integrals of Euclidean norms (which
we call 𝐿1) and of squared Euclidean norms (which we call 𝐿2).

3.2 Smoothness energies
Smoothness energies quantify the derivatives of a function on Ω
as a measure of its smoothness: The smaller the derivatives are,
the smoother a function is. While the first-order Dirichlet energy
1
2
∫
Ω ∥∇𝑢∥

2 𝑑𝑥 is popular for many applications, we focus on higher-
order smoothness energies, as first-order energies have a variety of
drawbacks that make them unsuitable in combination with point
constraints [Jacobson et al. 2011, Fig. 9], such as those used in
scattered data interpolation.
The two smoothness energies most relevant to our discussion

are the two higher-order energies of (1): The Laplacian energy 𝐸Δ2 ,
which measures the squared integrated Laplacian of a function,
and the squared Hessian energy 𝐸H2 , which measures the squared
integrated Hessian norm of a function.
𝐸Δ2 and 𝐸H2 originate in the study of classical mechanics. The per-

pendicular displacement𝑢 from the rest plane in a physical model of
a bending plate minimizes a smoothness energy subject to boundary
constraints [Courant and Hilbert 1989]. In this model, fixing the
plate to a particular location corresponds to the Dirichlet boundary
condition, and applying a clamp at the boundary additionally applies
a Neumann boundary condition. 𝐸Δ2 and 𝐸H2 display similar behav-
ior, but differ in their natural boundary conditions – the conditions
that apply at the boundary when no further constraints are applied
to an optimization problem. The natural boundary conditions of the

noisy data [Stein et al. 2018b] our

Fig. 7. Denoising scalar data on a surface (left). The 𝐿2 energy (center left)
produces a smooth function with curved isolines. Stein et al. [2018b]’s 𝐿1

energy (center right) produces slightly sharper isolines, but no corners. Our
𝐿1 energy (right), due to its intrinsicness, produces a sharp ridge with a
corner.

Hessian 𝐿2 energy correspond to no physical restraints at all, while
the natural boundary conditions of the Laplacian energy result in
noisy artifacts at the boundary [Stein et al. 2018b].

Relation to partial differential equations. It can be shown that
minimizers of 𝐸Δ2 and 𝐸H2 solve the biharmonic equation Δ2𝑢 = 0
on Ω, although the Hessian energy needs to be augmented with an
additional curvature term on curved surfaces [Stein et al. 2020a].

4 THE 𝐿1 HESSIAN ENERGY
In order to capture the benefits of 𝐿1 energies (sharpening and
sparsifying behavior) and apply them to smoothness energies, we
employ an 𝐿1 Hessian energy:

𝐸H (𝑢) =
∫
Ω
∥H𝑢 ∥ 𝑑𝑥 (10)

𝐸H (𝑢) can be used as a smoothness energy in any geometry
processing application that the 𝐿2 energies can, but it will display a
different behavior: instead of encouraging the overall smoothness
of a function, it produces functions that are piecewise smooth, with
nonsmooth parts concentrated on isolated sparse ridges (see Fig. 2).
The energy favors sharp ridges and other sharp features. Fig. 3
shows that the cube acts like a target point of the energy – the
energy preserves its shape. In Fig. 5 we see that the lowest-order
modes of 𝐸H feature sharp creases.
Previous works [Achenbach et al. 2015; He and Schaefer 2013]

suggest that sparsity-encouraging norms provide stabler results
when applied to anisotropic energies, rather than isotropic ones.
For instance, an 𝐿1 version of the vertex-based Laplacian energy
naturally leads to noisy spiky results all over the domain; He and
Schaefer [2013] combat this by approximately minimizing an 𝐿0

energy based on the (anisotropic) edge cotangent Laplacian. Fig. 2
shows the result of minimizing the ℓ1 norm of their edge Laplacian;
our energy may benefit from similar stability due to the inherent
anisotropy of the surface Hessian.

We can derive a partial differential equation (PDE) that is solved
by minimizers of our 𝐿1 Hessian energy 𝐸H with the principle of
variation. We vary 𝑢 in the direction of a test function 𝜂:

𝑑

𝑑𝜀

∫
Ω
∥H𝑢+𝜀𝜂 ∥ 𝑑𝑥

����
𝜀=0

= 0 . (11)
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Fig. 8. The dual halfedges ē𝑓 ,· connect the barycenter of the face 𝑓 with
the barycenter of its neighbors. 𝑢 is a piecewise linear per-vertex function,
and ∇𝑢 is a piecewise constant per-face vector (center). The per-halfedge
edge vector derivatives 𝛿𝑓 ,· are intrinsic to each face (right).

Applying the chain rule and evaluating at 𝜀 = 0 gives∫
Ω

1
2 (∥H𝑢 ∥2)−

1
2 · 2⟨H𝑢 ,H𝜂⟩ 𝑑𝑥 = 0 , (12)

where ⟨𝐴, 𝐵⟩ = trace(𝐴⊺𝐵) is the Frobenius inner product. Using
integration by parts and ignoring boundary terms for now (see
Supplemental Material B for further details), this is equivalent to∫

Ω

(
H∗ H𝑢

∥H𝑢 ∥

)
𝜂 𝑑𝑥 = 0 , (13)

where H∗ = ∇∗∇∗ is the adjoint to the Hessian operator defined
using the adjoint to the covariant derivative ∇∗ with respect to the
metric pairing [Petersen 2006]. Since 𝜂 is an arbitrary test function,
the only functions integrated over a region satisfying the above
equation are those in which

H∗ H𝑢

∥H𝑢 ∥
= 0 . (14)

(14) is to our 𝐿1 Hessian energy what the biharmonic equation
Δ2𝑢 = 0 is to the 𝐿2 Hessian energy.

5 DISCRETIZATION

5.1 Computing the energy
Discretizing the Hessian 𝐿1 energy 𝐸H is not straightforward. Stein
et al. [2018b] use mixed finite elements to take coordinate-wise
partial second derivatives. We do not adopt this approach, as it
does not result in an intrinsic operator, an operator which depends
only on the edge lengths of each triangle, and not on the coordi-
nate positions of the vertices. Intrinsic operators have a variety of
advantages. Firstly, the norm of the Hessian is a property which a
discretization should strive to preserve; secondly, intrinsic operators
are preserved under isometric deformations of a shape; and thirdly,
intrinsic operators allow the use of automatic intrinsic remeshing
such as intrinsic Delaunay triangulation [Sharp et al. 2019a].
We present a discretization of the Hessian tailor-made for 𝐿1

optimization. Let u be a per-vertex scalar function on a triangle
mesh𝑀 with 𝑛 vertices. u can be interpreted as a piecewise linear
function on each face by barycentric interpolation. This allows us
to directly and exactly compute ∇u, the gradient of u, an intrinsic
vector field that is constant per-face. Since the vector (∇u) 𝑓 is
tangent to the face 𝑓 , it can be written using an intrinsic orthogonal
basis for 𝑓 defined by the first halfedge for each face in its face-list
(see Fig. 8 (center) and Supplemental Material A).

CRASH

ground truth ours (barycenters)ours (circumcenters)

Fig. 9. Scattered data interpolation using different choices of triangle center.
While the circumcenter variant of our method (center) gives results more
similar to the ground truth (left), it may crash on meshes with zero dual
edge lengths (top center), unlike the barycenter variant (right).

i

j

k

ef,ief,k

ef,j
To discretize the covariant derivative in ∇∇𝑢

we start by computing the difference between
the gradient vectors on each halfedge. We
adopt the convention that a halfedge e𝑓 ,𝑖 of
a face 𝑓 is identified by the index 𝑖 of the ver-
tex it is opposite to. Let N𝑓 ,𝑖 be the neighbor
of face 𝑓 across halfedge 𝑖 . We then define the
difference of gradient vectors across the halfedge 𝑖 as

𝛿𝑓 ,𝑖 (u) = 𝐼𝑓 ,𝑖 (∇u)N𝑓 ,𝑖
− (∇u) 𝑓 , (15)

where the hinge map 𝐼𝑓 ,𝑖 embeds a vector from the intrinsic coordi-
nate system of face N𝑓 ,𝑖 to the intrinsic coordinate system of face
𝑓 , defined by isometrically mapping the face N𝑓 ,𝑖 into the plane of
𝑓 while keeping the shared edge fixed (see Fig. 8 (right)).
We now use the per-halfedge difference 𝛿𝑓 ,𝑖 to compute finite-

difference derivatives over each dual halfedge. Let ē𝑓 ,𝑖 be the dual
vector to halfedge 𝑖 in face 𝑓 that goes from the center of 𝑓 to
the center of its neighbor N𝑓 ,𝑖 (since we later divide by the length
of this, circumcenters could cause divisions by zero; we default
to barycenters). Similar to how Knöppel et al. [2015] measure the
transport of vectors along an edge from vertex to vertex, wemeasure
the transport of vectors across an edge from face to face to compute
our derivative over the halfedge:

𝑑𝑓 ,𝑖 (u) =
1

∥ē𝑓 ,𝑖 ∥2
𝛿𝑓 ,𝑖 · ē𝑓 ,𝑖 . (16)

These per-halfedge derivatives are then accumulated like in the
triangle-averaged operator of Grinspun et al. [2006]. Let E(𝑓 ) be
the set of halfedges of face 𝑓 . Then

H𝑓 (u) =
∑︁

𝑖∈E (𝑓 )

𝑑𝑓 ,𝑖

∥ē𝑓 ,𝑖 ∥2
ē𝑓 ,𝑖 ⊗ ē𝑓 ,𝑖 . (17)

where ⊗ denotes the tensor product of vectors. We ignore boundary
halfedges during accumulation in order to not make any explicit
assumptions on boundary conditions.
H𝑓 (u) is a symmetric 2×2 matrix (by construction) in the intrinsic

coordinate system of 𝑓 that corresponds to the Hessian H𝑢 . We now
need to take its Frobenius norm and integrate it over the entire
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Ours time 𝐿2 time [Stein et al. 2018b]

𝐿1 time |𝑉 |

Octopus (2D) 0.367s 0.052s 0.343s 9142
Person (2D) 1.268s 0.087s 5.252s 9551
Frog (3D, original) 0.515s – – 12491
Cat (3D) 4.617s 0.261s 309.522s 31790
Frog (3D, 1 subd.) 2.142s – – 49964
Cathedral (2D) 6.168s 0.608s 9.337s 59833
Skull (3D) 26.374s 1.202s 26.615s 82494
Cherries (3D) 36.329s 10.505s 116.680s 126303
Frog (3D, 2 subd.) 9.645s – – 199856
Triceratops (3D) 20.639s 3.723s 42.133s 387664

Table 1. Runtimes for our method on a few of the examples in this article.

triangle mesh.

EH (u) =
∑︁

faces 𝑓
𝐴𝑓 ∥H𝑓 (𝑢)∥F , (18)

where 𝐴𝑓 is the area of the face 𝑓 , and ∥𝐵∥F =
√︃∑

𝑖

∑
𝑗 𝐵

2
𝑖 𝑗
is the

Frobenius norm of a matrix.

5.2 Representation by matrices
Given a scalar function represented as a vector of per-vertex values
u, we can explicitly write our surface Hessian as Hu = M𝐹TCGu,
where the matrices G, C, T, and M𝐹 represent taking the intrin-
sic gradient on faces, the covariant derivative on halfedges, the
tensor product operation on faces, and the scaling by face areas
respectively.

The intrinsic gradient on face 𝑓 with vertices 𝑖, 𝑗, 𝑘 and tip angle
𝜃𝑖 at vertex 𝑖 takes the explicit form

(Gu) 𝑓 =

(
𝑢 𝑗−𝑢𝑖
𝑙𝑖 𝑗

(𝑙𝑘𝑖 cos𝜃𝑖−𝑙𝑖 𝑗 )𝑢𝑖−(𝑙𝑘𝑖 cos𝜃𝑖 )𝑢 𝑗+𝑙𝑖 𝑗𝑢𝑘
𝑙𝑖 𝑗 𝑙𝑘𝑖 sin𝜃𝑖

)⊺
, (19)

where the intrinsic basis has unit-length x̂ pointing along edge 𝑖 𝑗 .
The hinge map covariant derivative C takes vectors on faces to

vectors on halfedges; for halfedge ℎ𝑖 𝑗 on face 𝑓𝑖 corresponding to
the edge shared between 𝑓𝑖 and 𝑓𝑗 , C has entries

(C)ℎ𝑖 𝑗 ,𝑓𝑗 =
[
R(𝜃 )

]
, (C)ℎ𝑖 𝑗 ,𝑓𝑖 =

[
−I2×2

]
, (20)

where R(𝜃 ) rotates the basis at face 𝑓𝑖 onto the basis at face 𝑓𝑗 .
The tensor product matrix T takes halfedge vectors to the matrix

corresponding to their scaled summed tensor products on faces;
its entries can be found in Supplemental Material A. M𝐹 scales the
Hessian entries by corresponding face areas. The discrete 𝐿1 Hessian
energy is evaluated by taking the ℓ2 norm of the four Hessian entries
corresponding to each face, and then summing over all faces.

5.3 Optimization
An objective involving the 𝐿1 Hessian energy is more difficult to
optimize than the usual 𝐿2 objectives because of the presence of
square roots in each term of the sum (18). 𝐿2 energies consist of a
sum of squares, which makes the optimization a simple quadratic
program whose solution can be found by finding a critical point

ground truth 0 subdivisions 1 subdivision 2 subdivisions

Fig. 10. Scalar hole filling with our method on a surface with increasing
mesh resolutions. Higher-subdivision results visually match the ground
truth better.

ground truth ours ours 
+ intrinsic Delaunay

Fig. 11. Scattered data interpolation with and without intrinsic Delaunay
remeshing. Our method without preprocessing (center) is sensitive to bad
triangles (left, inset). Since our operator is intrinsic, we can mitigate this
issue by preprocessing with intrinsic Delaunay remeshing (right).

– this only requires the solution of a single linear equation. The
square roots in the 𝐿1 Hessian energy make this impossible.

However,H𝑓 (𝑢) is a linear function of𝑢, so the resultingEH (u) is
a sum of norms of linear functions. As a result, the 𝐿1 optimization
problem can be transformed into a conic programming problem
that is amenable to standard black-box solvers. For this, we employ
an approach similar to Stein et al. [2018b, Appendix C] that can
efficiently solve problems of the following form:

argmin
u

EH (u) + 𝛼 ∥u − u0∥2 s.t. Au = b . (21)

See Supplemental Material D for details.
To understand the kinds of functions favored by 𝐸H, we compute

its compressed vibration modes [Brandt and Hildebrandt 2017], an
analogon to eigenfunctions (see Fig. 5). We observe that the lowest
modes of the 𝐿1 energy 𝐸H are characterized by sharp ridges, while
those of 𝐸H2 are smooth with saddle-like features. See Supplemental
Material C for the algorithm used to compute the modes.

6 IMPLEMENTATION
This article was implemented in Python using NumPy [Harris et al.
2020] for linear algebra, SciPy [Virtanen et al. 2020] for sparse linear
algebra, and libigl [Jacobson et al. 2018] and Gpytoolbox [Sellán
and Stein 2023] for geometry processing routines and quadratic
optimization. Conic programs were solved using Mosek [MOSEK
ApS 2024], and Cholesky decompositions were performed using
scikit-sparse, a Python wrapper for SuiteSparse [Davis and Hu 2011].
We used Blender and BlenderToolbox [Liu 2023b] for 3D renderings
and matplotlib [Hunter 2007] for visualizing 2D results. All results
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ground truth our[Stein et al. 2018b]

Fig. 12. Filling in missing data using our 𝐿1 Hessian energy 𝐸H. The data
inside the red regions is unknown and needs to be recovered. The 𝐿2 energy
𝐸H2 destroys the sharp ridge features of the input. Stein et al. [2018b]’s 𝐿1

energy’s axis alignment also destroys the ridges. Our 𝐿1 energy reconstructs
the sharp feature.

input cubic stylization ours

unscaled angle
defect

unscaled angle
defect

Fig. 13. Our method can stylize shapes to be piecewise flat (right). Unlike
the method of Liu and Jacobson [2019]’s (center), our result shapes are not
aligned to predefined normal directions, and are fit to the actual geometry
of the input shape.

were run and rendered on a workstation with an Intel i7-13700K
16-core processor and Nvidia 4080 graphics card. Runtime statistics
can be found in Table 1. In general, the runtimes of our method are
on the same order as those of Stein et al. [2018b], and we found
that our solver consistently converged for manifold-with-boundary
meshes with reasonable triangles.

6.1 Effects of discretization
Fig. 10 shows the behavior of our method under mesh refinement.
While our discretization is not guaranteed to converge, we empiri-
cally observe convergence to a limit with Loop subdivision.

Without any preprocessing, our discretization struggles with the
kinds of triangle shapes that are difficult for many finite element
methods. Since our discrete energy is purely intrinsic, however, we
can intrinsic Delaunay remesh [Fisher et al. 2006] in a preprocessing
step to mitigate this issue. Fig. 11 shows that intrinsic remeshing
preprocessing makes our method work even on challenging meshes.
We offer the option for our dual edges ê𝑓 ,𝑖 to be either barycen-

tric or circumcenter dual, and default to barycentric for robustness.
Fig. 9 shows the difference between these two choices: The circum-
center dual is less robust, and can fail on some triangulations, while
performing slightly better on very good triangulations.

η = 1250 η = 500input η = 50
10 steps25 steps 1 step

Fig. 14. Our flow under different step sizes. Step counts are chosen to sum
to 0.01 (using 1

2𝑑𝑡 = 𝜂). For large 𝜂 with more steps, the surface becomes
more piecewise-flat. The surface is colored using the local Hessian norm.

7 APPLICATIONS

7.1 Scattered data interpolation
To interpolate scattered data provided at isolated points over a
surface, we solve

argmin
u

EH (u) s.t. (u)𝑖 = (u0)𝑖 ∀𝑖 ∈ 𝑆 . (22)

Figs. 1 (left) and 6 show our method applied to scattered data
interpolation problems on flat and curved surfaces. Unlike the 𝐿2

energy, our 𝐿1 energy reconstructs sharp ridges. Unlike Stein et al.
[2018b]’s 𝐿1 energy, our intrinsic approach reconstructs ridges even
where they do not align with axes on the flat shape, and on the
curved parts of a curved shape.

7.2 Data denoising
We can use our energy as a regularizer that encourages piecewise
smoothness when denoising scalar data. Specifically, we can ask for
functions which minimize our energy while staying close (in an 𝐿2

sense) to noisy input data:
argmin

u
EH (u) + 𝛼 ∥u − u0∥2 . (23)

Fig. 2 shows our method applied to a noisy heightfield. Compared
to an 𝐿2 energy, our energy results in sharp ridges in the result.
Figs. 1 (center) and 7 show that our method produces sharp ridges
on curved surfaces, unlike the method of Stein et al. [2018b].

7.3 Stylization
Our energy can be used in a geometric flowwhich encourages extrin-
sic piecewise flatness by applying it to the three coordinate functions
𝑥,𝑦, 𝑧. Piecewise smooth stylization is a popular task in geometry
processing: beyond the 𝐿1 approaches mentioned in Section 2, other
approaches include encouraging developability [Binninger et al.
2021; Ion et al. 2020; Rabinovich et al. 2018; Sellán et al. 2020; Stein
et al. 2018a] and manipulating the normals of the shape directly
[Jadon et al. 2022; Liu and Jacobson 2019, 2021].
For stylization, we repeatedly smooth the coordinate functions,

recalculating our Hessian at every iteration on the new geometry.

©«
x(𝑖+1)

y(𝑖+1)

z(𝑖+1)

ª®®¬ = argmin
x,y,z

EH (x)+EH (y)+EH (z)+𝜂

©«
x
y
z

ª®¬ −
©«
x(𝑖 )

y(𝑖 )

z(𝑖 )

ª®®¬


2

, (24)
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segmented v⁽ᵉⁿᵈ⁾ (x,y,z)⁽ᵉⁿᵈ⁾ segmented v⁽ᵉⁿᵈ⁾ (x,y,z)⁽ᵉⁿᵈ⁾ segmented
v⁽ᵉⁿᵈ⁾
on (x,y,z)⁽ᵉⁿᵈ⁾

Fig. 15. Our 𝐿1 Hessian energy can be used to segment meshes by repeatedly sharpening and sparsifying a cut indicator function v. The resulting segmentations
are plotted on the geometry that is to be segmented, while v is plotted on top of the sharpened geometry (x, y, z) produced during the segmentation process.

Fig. 16. Filling in holes in the geometry using our 𝐿1 Hessian flow. The hole
is first filled with an ad-hoc hole-filling method [Liepa 2003], and then our
flow is run to fill the hole with a shape that has a sharp ridge.

where 𝜂 is a step size that determines the speed and stability of
the geometric flow. Additionally, at each time step, the Hessian
matrix is constructed using a version of the mesh which is scaled
to have maximum edge length 1. Figs. 3 (left) and 4 show a variety
of piecewise linear stylizations using our flow with multiple steps.
Fig. 3 (center) shows the method applied to noisy coordinates of a
surface; the result is a denoising of the geometry. Fig. 14 shows the
effect of varying 𝜂 while scaling the step count to maintain the total
time. Larger 𝜂s (and step counts) tend to better minimize the energy
over the shape, leading to a sharper appearance. It is worth noting
that our stylization effect differs from Liu and Jacobson [2019]’s,
which aligns mesh normals to a predefined set of directions (Fig. 13).

7.4 Hole filling
Our 𝐿1 Hessian energy can be used to fill holes on shapes with sharp
features. Filling holes in meshes is a popular geometry processing
task that has been extensively studied, as is detailed in the survey of
Guo et al. [2016]. Examples of more recent methods are the works
of Calatroni et al. [2022]; Centin et al. [2015]; Feng et al. [2020].

7.4.1 Scalar data. Smoothness energies can be used as a regularizer
for completing missing regions on a surface. To this end, we use (22),
but rather than choosing 𝑆 to be a sparse point set on the surface, it
is instead chosen to be the known ground truth data outside of the
missing regions. Fig. 12 shows our method used for data hole-filling
on both a flat and curved surface. Unlike Stein et al. [2018b]’s 𝐿1

energy, our intrinsic energy does not suffer from axis alignment,
and manages to fill in the holes with sharp ridges.

7.4.2 Geometry. In situations where the missing hole data is geo-
metric, we can employ our stylizing flow to fill in the gaps, restrict-
ing to an initial hole-filled geometry. We first fill relevant bound-
ary loops using a coarse hole-filling method [Liepa 2003] before
remeshing [Botsch and Kobbelt 2004] with a fine-grained target
edge length. We then initialize the filled hole using minimizers of
the 𝐿2 interpolation problem, and flow the mesh with our stylizing
flow, constraining data outside of the missing regions to remain the
same between iterations.

Figs. 3 and 16 shows this process in action.

7.5 Segmentation
𝐸H can be used to segment meshes. This is another and well-studied
problem in geometry processing; recent surveys on image and mesh
segmentation [Minaee et al. 2022; Rodrigues et al. 2018] provide
an overview over the large body of work on the topic. Especially
relevant for us are approaches using the Mumford-Shah model
[Chan and Vese 2001; Gao and Bui 2005; Kiefer et al. 2020; Mumford
and Shah 1985], its Ambrosio-Tortorelli approximation [Ambrosio
and Tortorelli 1990; Coeurjolly et al. 2016], and its generalizations
to triangle meshes [Bonneel et al. 2018; Liu et al. 2020; Weill–Duflos
et al. 2023], as our segmentation method is based on inserting an 𝐿1

Hessian term into a Mumford-Shah-like formulation.
Our method works by constructing an approximation to the in-

put mesh which simultaneously optimizes 𝐸H as well as the set of
regions over which the energy is evaluated. We employ a variation
on the popular Mumford-Shah functional where we minimize

M(𝑢, Γ) = 𝛼

∫
Ω
∥𝑢 (𝑥) − 𝑢0 (𝑥)∥2 𝑑𝑥 +

∫
Ω\Γ
∥H𝑢 ∥ 𝑑𝑥 + 𝜆

∫
Γ
𝑑𝑥 .

The first term penalizes deviation from the original function, the
second term encourages linearity away from the sparse set of seg-
mentation boundary curves Γ, and the third term penalizes the total
length of Γ. As this functional is highly nonlinear and difficult to op-
timize, we instead employ the approximation of Ambrosio-Tortorelli
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v⁽ᵉⁿᵈ⁾ (x,y,z)⁽ᵉⁿᵈ⁾

original aerial scan

segmented

Fig. 17. Our segmentation strategy applied to a mesh reconstructed from
an aerial scan of a building complex. The 𝐿1 Hessian energy enforces a
piecewise linear prior, selecting the mostly-flat angled roofs and side walls
as segments.

[Ambrosio and Tortorelli 1990], but insert our 𝐿1 Hessian:

𝐴𝜀 (𝑢, 𝑣) = 𝛼

∫
Ω
∥𝑢 (𝑥) − 𝑢0 (𝑥)∥2 𝑑𝑥 +

∫
Ω
𝑣2∥H𝑢 ∥ 𝑑𝑥

+𝜆
∫
Ω
𝜀∥∇𝑣 ∥2 + 1

4𝜀 (1 − 𝑣)
2 𝑑𝑥

(25)

Here, 𝑣 is a functional which represents the true Γ as an (inverse)
indicator function which gets progressively sparser as 𝜀 → 0. We
follow Weill–Duflos et al. [2023]’s discretization and solve using
a variation on their alternating optimization method; see Supple-
mental E for more details. Figs. 1 (right), 15, and 17 show our seg-
mentation procedure in action. We recover clean cuts and segments
that follow the ridges in a piecewise smooth approximation. Fig-
ure 18 shows our results for varying 𝜆, where smaller 𝜆s encourage
solutions with many segments.

7.6 Diffusion curves
Diffusion curves [Orzan et al. 2008] extend the concept of vector
graphics to colors. Instead of assigning a color value to every point of
the domain, colors are assigned to sparse curves only, and smoothly
interpolated to the rest of the domain. Our 𝐿1 Hessian optimization
can be used to solve the inverse diffusion curve problem: for a
surface with colors, find a set of sparse curves and color values on
those curves so that, when reconstructed via the diffusion curves
method, we obtain a result that is close to the original input.
The inverse diffusion curves problem asks for a set of curves Γ

and color values 𝑐𝐿 and 𝑐𝑅 along the “left” and “right” sides Γ𝐿 and
Γ𝑅 of Γ such that the solution to

Δ𝑢
��
Ω\Γ = 0, 𝑢

��
Γ𝐿

= 𝑐𝐿, 𝑢
��
Γ𝑅

= 𝑐𝑅 (26)

approximates a ground truth color distribution 𝑢0.
To solve this problem, we split it into a curve discovery step and

an approximate color assignment step. In the first step, we sample
an artist-provided texture at the vertices of the mesh, and then
choose Γ as the segment boundaries resulting from our segmentation
procedure. In the second step, we solve the quadratic program

u∗ = argmin
u

u⊺Lu + 𝛼 ∥u − u0∥2 (27)

λ=0.1 λ=0.05 λ=0.01λ=0.2

Fig. 18. Varying the parameter 𝜆 in the segmentation tasks controls for the
number of segments in the final segmentation.

input coloredidentified input coloredidentified
surface curves surfacecurves

Fig. 19. Using our 𝐿1 Hessian energy to construct diffusion curves on a
surface. For an input surface with vertex colors, we identify sparse, salient
curves to reconstruct color on the entire surface.

where L is the cotangent Laplacian, over each region of the seg-
mentation. 𝑐𝐿 and 𝑐𝑅 are assigned by evaluating u∗ at the segment
boundaries. We recover approximate diffusion colors by solving (26)
over each segment. We show the results of this procedure in Figure
19 based on colors 𝑢0 sampled from an artist-provided texture.

8 LIMITATIONS & CONCLUSION
Our method smooths out some sharp ridges on highly curved seg-
ments (Fig. 20, left). This could potentially be addressed by adding an
𝐿1 curvature term to the energy [Stein et al. 2020a]. The discretiza-
tion can also introduce mesh-dependence: Since the problem of
piecewise mesh stylization is under-determined, the initial direction
of mesh edges can influence the results (Fig. 20, right). Moreover,
our discretization of the 𝐿1 Hessian energy 𝐸H does not converge
to the exact result under mesh refinement. While we capture some
qualitative 𝐿1 behavior, our discretization cannot be used to com-
pute actual energy values. Interesting future work directions are to
improve our discretization by explicitly accounting for curvature,
employing higher-order FEM, and using different dual edges ê𝑓 ,𝑖 .
Lastly, while the smooth Hessian energy is well-defined on solid
volumes, a discretization over tetrahedral meshes remains unknown.

Ridge-like regions appear in our results, but we do not explicitly
control the locations of these ridges. It could be beneficial to use
a weighting scheme to promote ridge development in specified
regions, similar to how cut locations are encouraged to form in
regions of high ambient occlusion in Weill–Duflos et al. [2023].

We use a black-box conic solver for our optimization procedure,
which negatively impacts performance and scaling. We leave the
development and implementation of more-efficient optimization
procedures for the 𝐿1 Hessian energy to future work.
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stylize

stylize

hole-fill

Fig. 20. Different initial mesh layouts lead to different stylizations (left).
On strongly curved segments, our method does not preserve this X-shaped
sharp feature during hole-filling (right).
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SUPPLEMENTAL MATERIAL

A DETAILED DERIVATION OF OPERATORS
Our Hessian operator consists of 4 matrices which are multiplied
together. The first just represents the gradient on faces, in the in-
trinsic orthonormal basis with x̂ pointing along the edge between
edge 𝑖 𝑗 :

(Gu) 𝑓 =

( −1
𝑙𝑖 𝑗

𝑢𝑖 + 1
𝑙𝑖 𝑗
𝑢 𝑗

𝑙𝑘𝑖 cos𝜃𝑖−𝑙𝑖 𝑗
𝑙𝑖 𝑗 𝑙𝑘𝑖 sin𝜃𝑖 𝑢𝑖 − cos𝜃𝑖

𝑙𝑖 𝑗 sin𝜃𝑖 𝑢 𝑗 +
1

𝑙𝑘𝑖 sin𝜃𝑖 𝑢𝑘

)
, (28)

where the face 𝑓 has vertices 𝑖, 𝑗, 𝑘 , and 𝜃𝑖 is the tip angle at vertex
𝑖 .

The second matrix takes differences of the previously-found gra-
dients across a halfedge between the two faces. Explicitly, if 𝜃 𝑓𝑖 ,𝑓𝑗 is
the angle the basis at face 𝑓 would need to be rotated by to align
with the basis at face 𝑓𝑗 , the halfedge ℎ𝑖 𝑗 (on 𝑓𝑖 corresponding to
the edge shared between 𝑓𝑖 and 𝑓𝑗 ) gets the matrix entries

(C)ℎ𝑖 𝑗 ,𝑓𝑗 =
[
R(𝜃 )

]
(C)ℎ𝑖 𝑗 ,𝑓𝑖 =

[
−I2×2

] (29)

The third matrix divides the previous difference by the length of
the dual edge between two centroids and performs a tensor product.
Let e.g. 𝑡𝑖 𝑗,𝑥 correspond to the 𝑥 entry of the unit vector pointing
from the centroid of 𝑓 to the centroid at the face across halfedge 𝑖 𝑗
in triangle 𝑓 , and 𝑙★

𝑖 𝑗
correspond to the intrinsic distance between

these centroids. Additionally, let e.g. 𝑐𝑖 𝑗,𝑥 correspond to the 𝑥 entry
in the difference taken over halfedge 𝑖 𝑗 in face 𝑓 . Then
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( 1
𝑙★
𝑗𝑘

𝑡2
𝑗𝑘,𝑥

𝑡 𝑗𝑘,𝑦
1
𝑙★
𝑗𝑘

𝑡 𝑗𝑘,𝑥 𝑡
2
𝑗𝑘,𝑦

1
𝑙★
𝑗𝑘

𝑡 𝑗𝑘,𝑥 𝑡
2
𝑗𝑘,𝑦

1
𝑙★
𝑗𝑘

𝑡3
𝑗𝑘,𝑦

)⊺
𝑇3 =

( 1
𝑙★
𝑘𝑖

𝑡3
𝑘𝑖,𝑥

1
𝑙★
𝑘𝑖

𝑡2
𝑘𝑖,𝑥

𝑡𝑘𝑖,𝑦
1
𝑙★
𝑘𝑖

𝑡2
𝑘𝑖,𝑥

𝑡𝑘𝑖,𝑦
1
𝑙★
𝑘𝑖

𝑡𝑘𝑖,𝑥 𝑡
2
𝑘𝑖,𝑦

)⊺
𝑇4 =

( 1
𝑙★
𝑘𝑖

𝑡2
𝑘𝑖,𝑥

𝑡𝑘𝑖,𝑦
1
𝑙★
𝑘𝑖

𝑡𝑘𝑖,𝑥 𝑡
2
𝑘𝑖,𝑦

1
𝑙★
𝑘𝑖

𝑡𝑘𝑖,𝑥 𝑡
2
𝑘𝑖,𝑦

1
𝑙★
𝑘𝑖

𝑡3
𝑘𝑖,𝑦

)⊺
𝑇5 =

( 1
𝑙★
𝑖 𝑗

𝑡3
𝑖 𝑗,𝑥

1
𝑙★
𝑖 𝑗

𝑡2
𝑖 𝑗,𝑥

𝑡𝑖 𝑗,𝑦
1
𝑙★
𝑖 𝑗

𝑡2
𝑖 𝑗,𝑥

𝑡𝑖 𝑗,𝑦
1
𝑙★
𝑖 𝑗

𝑡𝑖 𝑗,𝑥 𝑡
2
𝑖 𝑗,𝑦

)⊺
𝑇6 =

( 1
𝑙★
𝑖 𝑗

𝑡2
𝑖 𝑗,𝑥

𝑡𝑖 𝑗,𝑦
1
𝑙★
𝑖 𝑗

𝑡𝑖 𝑗,𝑥 𝑡
2
𝑖 𝑗,𝑦

1
𝑙★
𝑖 𝑗

𝑡𝑖 𝑗,𝑥 𝑡
2
𝑖 𝑗,𝑦

1
𝑙★
𝑖 𝑗

𝑡3
𝑖 𝑗,𝑦

)⊺
The fourth matrixM𝐹 is a matrix containing facewise areas, re-

peated 4 times for each face.
Then the four intrinsic Hessian entries corresponding to a func-

tion u are given by the entries of

Hu = M𝐹TCGu (30)

Each matrix entry corresponding to boundary halfedges is zeroed
out.

B FLAT 𝐿1 HESSIAN BOUNDARY CONDITIONS IN 2D
Here, we derive the boundary conditions for the 𝐿1 Hessian in a
(nice enough) subset Ω of R2, assuming ∥𝐻𝑢∥𝐹 ≠ 0. We start with
Equation (12), partially converting it to indices:∫

Ω

1
∥𝐻𝑢∥𝐹

𝜕𝑖 𝜕𝑗𝑢 · 𝜕𝑖 𝜕𝑗𝜂 𝑑𝑥 = 0 . (31)

Integrating by parts twice (once in 𝑖 and once in 𝑗 ) yields∫
𝜕Ω

1
∥𝐻𝑢∥𝐹

n⊺ (𝐻𝑢) (∇𝜂) − 𝜂 ·
(
∇ · 𝐻𝑢

∥𝐻𝑢∥𝐹

)
· n𝑑𝑆

+
∫
Ω
𝜂 · 𝐻∗

(
𝐻𝑢

∥𝐻𝑢∥𝐹

)
𝑑𝑥 = 0 .

(32)

The integration over Ω is precisely the interior pointwise condi-
tion given in Equation (13). Here we focus on understanding the
boundary terms using two characteristic types of variation 𝜂, and
subsequently drop the last term from (32).

B.1 Case 1: Variation is zero on 𝜕Ω and ∇𝜂 ∝ n
First, we consider variations which are zero on the boundary, but
which only have gradient in the normal direction. Such variations
satisfy ∇𝜂 = 𝑔n where 𝑔 is a scalar function. The boundary integra-
tion becomes∫

𝜕Ω

1
∥𝐻𝑢∥𝐹

n⊺ (𝐻𝑢) (𝑔n) − 0 ·
(
∇ · 𝐻𝑢

∥𝐻𝑢∥𝐹

)
· n𝑑𝑆 = 0 (33)

and, since 𝑔 is arbitrary,
n⊺ (𝐻𝑢)n = 0 . (34)

This is the same condition as appears in the 𝐿2 scenario of Stein
et al. [2018b].

B.2 Case 2: Variation is nonzero on 𝜕Ω and ∇𝜂 ∝ t
In this case, the variation is nonzero on the boundary, and we also
impose that the gradient of the variation is proportional to the
tangent vector (∇𝜂 = (∇𝜂 · t)twhere t is unit length), and we impose
the integrability condition

∮
𝜕Ω ∇𝜂 · t𝑑𝑆 = 0 (∇𝜂 · t is continuous on

the boundary). In coordinates, this gives∫
𝜕Ω

(
1

∥𝐻𝑢∥𝐹
n⊺ (𝐻𝑢)t

)
(t𝑖 · 𝜕𝑖𝜂) −𝜂 ·

(
∇ · 𝐻𝑢

∥𝐻𝑢∥𝐹

)
·n𝑑𝑆 = 0 . (35)

Integration by parts on the leftmost term (a line integral on the
boundary, where the derivative is t · ∇) results in an integral over
𝜕𝜕Ω (the empty set) and an integral over 𝜕Ω,

−
∫
𝜕Ω

𝜂 ·
(
∇

(
t⊺

𝐻𝑢

∥𝐻𝑢∥𝐹
n
)
· t +

(
∇ · 𝐻𝑢

∥𝐻𝑢∥𝐹

)
· n

)
𝑑𝑆 = 0 . (36)

Finally, to convert this to a pointwise boundary condition, it re-
mains to give a class of variations which satisfy ∇𝜂 = (∇𝜂 · t)t and∮
𝜕Ω ∇𝜂 · t𝑑𝑆 = 0 and which converge to a point measure at some

boundary point 𝑥0. Let 𝜂 be a smooth positive bump function on 𝜕Ω
which is compactly supported in a ball of radius ℎ around 𝑥0 and
which integrates to 1 over 𝜕Ω; its gradient automatically fulfills the
integrability condition. We extend 𝜂 into the domain by keeping it
constant in the inward normal direction over a small enough thick-
ening of the boundary, and then by smoothly filling the interior of
the domain from the inner boundary of this strip. This variation is

1
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within the class of variations we have restricted ourselves to (even
for arbitrarily small support around 𝑥0), and still satisfies Equation
(36). So, pointwise,

∇
(
t⊺

𝐻𝑢

∥𝐻𝑢∥𝐹
n
)
· t +

(
∇ · 𝐻𝑢

∥𝐻𝑢∥𝐹

)
· n = 0 . (37)

This condition is similar to the 𝐿2 scenario of Stein et al. [2018b],
with the difference of an additional denominator appearing.

C COMPUTING MODES
To compute the modes in Fig. 5, we alternate between

u𝑖 ← argmin
u

1
2u
⊺Lu + 𝜇∥Hu∥

s.t.u⊺
𝑖
Mu = 0 ∀𝑗 < 𝑖

c⊺
𝑖−1Mu = 1 , and

c𝑖 ←
u𝑖√︃

u⊺
𝑖
Mu𝑖

(38)

until convergence, where c0 is initialized randomly, and 𝜇 = 1000000.
To find modes of the 𝐿2 energy, we apply eigsh [Virtanen et al. 2020]
to the 𝐿2 matrix of Stein et al. [2018b].

D TRANSFORMING THE OPTIMIZATION PROBLEM
INTO CONIC FORM

To optimize (21), we rearrange it into the form

argmin
u
∥Hu∥𝜑,1 + 𝛼u⊺Mu − 2u⊺0 Mu s.t. Au = b , (39)

where H is a matrix mapping u to its four intrinsic Hessian entries,
and M is the (Voronoi) lumped mass matrix of Ω (see Supplemental
Material A). The norm ∥ · ∥𝜑,1 corresponds to taking the standard
Euclidean norm (not the squared norm) of the vector with the four
entries corresponding to each face, and then summing the norms
over all faces. The nonlinear terms in the objective can be rewritten
as standard conic problem constraints by introducing variables 𝑟 =
2𝛼u⊺Mu and z = ∥(Hu) |𝑓 ∥ (where |𝑓 represents taking the 4 entries
of our linear Hessian operator that correspond to face 𝑓 ), and by
Cholesky decomposing 2𝛼M = LL⊺

argmin
u

1⊺z + 𝑟 − 2u⊺0 Mu

s.t.



𝐴u = b,

(z)𝑓 ≥

√√√ 4∑︁
𝑖

(
(Hu) |𝑓

)2

𝑖
∀𝑓

𝑟 ≥
∑︁
𝑗

(L⊺u)2𝑗

(40)

The objective in this problem is linear in the variables z, 𝑟 , and u,
and the constraints correspond to a linear constraint, a quadratic
conic constraint, and a rotated conic constraint respectively. It can
be efficiently solved using black-box conic solvers.

E SEGMENTATION DISCRETIZATION AND
OPTIMIZATION

We follow Weill–Duflos et al. [2023] by applying a smoothness
energy to vertex-based functions in order to minimize a face-based
quantity (𝑣). Employing the face-based DEC Laplacian matrix L
(using extrinsic distance between centroids) [Desbrun et al. 2005],
the Voronoi mass matrixM, and the diagonal matrix of face areas
M𝐹 , we discretize the functional as
A(u, v) = 𝛼 (u − u0)⊺M(u − u0) + (v2)⊺ ∥Hu∥𝜙 + 𝜆𝜀v⊺Lv+

𝜆

4𝜀 (v
⊺M𝐹 v − 2⊺M𝐹 v) 𝑑𝑥 .

(41)

where v2 is the elementwise square of v, and ∥ · ∥𝜙 represents
taking Frobenius norm over the 4 entries corresponding to a face.
In this energy functional, 𝜆 penalizes length between segmentation
regions, and 𝛼 encourages solutions to closely approximate the
original function. (41) is solved using an alternating scheme. For a
fixed 𝜀, we follow the procedure

v(𝑖+1) ← argmin
v

v⊺
(
diag(∥Hu(𝑖 ) ∥𝜙 ) + 𝜆𝜀L +

𝜆

4𝜀M𝐹

)
v − 𝜆

4𝜀 2
⊺M𝐹 v

u(𝑖+1) ← argmin
u

𝛼u⊺Mu + 1⊺ (diag(v(𝑖+1) )2∥Hu∥𝜙 − 2𝛼u⊺0 Mu

before halving 𝜀 and resolving, repeating until 𝜀 is below a threshold
𝜀2. The fixed u iteration amounts to a quadratic solve in v, whereas
the fixed v iteration amounts to a conic program solve in u. To apply
the segmentation procedure to geometry, we set u to be the vertex
coodinates (x, y, z).

At last, we apply postprocessing to find a true segmentation of the
mesh elements. We first take the mean of v between the faces adja-
cent to each edge. We then cut the mesh along edges with v smaller
than some threshold. We then merge the resulting connected com-
ponents with fewer than 𝜏 faces into their neighboring components
based on a majority vote along their boundaries; 𝜏 is a hyperparam-
eter that should be chosen dependent on mesh resolution.

F PARAMETERS
Figure 1. The Cherry parameters were 𝛼ours = 6.1479 for our

energy and 𝛼𝐿1 = 16.17 for [Stein et al. 2018b] 𝐿1. The Tete seg-
mentation used the parameters 𝜆 = 0.25, 𝛼 = 1000, 𝜀init = 0.1, 𝜀end =

0.001, 𝜀inner loop = 0.00001 and used a cut threshold of 0.5 and merge
threshold 𝜏 of 20 faces.

Figure 2. The Cathedral parameters were 𝛼ours = 100 for our
energy, 𝛼𝐿2 = 0.05 for 𝐿2, 𝛼𝐿1 = 100 for [Stein et al. 2018b] 𝐿1, and
𝛼Δ1 = 25 for the 𝐿1 edge Laplacian energy.

Figure 3. The flowed cube was run for 50 iterations at fidelity
weight 100. The denoised cube ran for 10 iterations at fidelity weight
500. The hole filled cube ran for 100 iterations at fidelity weight 100.

Figure 4. For the Springer, we ran our flow for 20 iterations at
fidelity weight 500. For Koala, we ran our flow for 40 iterations at
fidelity weight 500.

Figure 5. For our compressed modes on the Square and Catenoid,
we used 𝜇 = 1000000 and 𝜀 = 5 × 10−10 for the inner loop stopping
criterion.
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Figure 7. For the Skull, we used 𝛼ours = 44.675350189208984 for
our energy,𝛼𝐿2 = 0.11566162109375 for𝐿2,𝛼𝐿1 = 78.5 for [Stein et al.
2018b] 𝐿1. For this figure, the smoothing parameters were searched
for by evaluating our optimization procedure at 5 equally spaced
points across a large starting range, then recursing on the 3-point
subinterval whose center point admitted the closest 𝐿2 solution to
the ground truth.

Figure 13. We used the authors’ command line C++ implementa-
tion of [Liu and Jacobson 2019], with a parameter 𝜆 = 1. Our Hand
ran for 43 iterations at a fidelity weight 500.

Figure 14. For Nefertiti, the fidelity parameters are set to 𝜂 = 1250
for 25 steps, 𝜂 = 500 for 10 steps, and 𝜂 = 50 for 1 step.

Figure 15. The Dodecahedron used 𝜆 = 0.3, 𝛼 = 1000, 𝜀init =

0.1, 𝜀end = 0.001, 𝜀inner loop = 0.00001, a cut threshold of 0.6, and
a merge limit of 4. The Fandisk used 𝜆 = 0.5, 𝛼 = 1000, 𝜀init =

0.1, 𝜀end = 0.01, 𝜀inner loop = 0.00001, a cut threshold of 0.305, and a
merge limit of 4. The Moai used 𝜆 = 0.1, 𝛼 = 1000, 𝜀init = 0.1, 𝜀end =

0.0001, 𝜀inner loop = 0.00001, a cut threshold of 0.7, and a merge limit
of 30.

Figure 16. The Horseshoe flowed for 80 iterations at a fidelity
weight 100. Evora flowed for 40 iterations at a fidelity weight 1000.

Figure 17. The Building used 𝜆 = 0.03, 𝛼 = 0.5, 𝜀init = 0.1, 𝜀end =

0.001, 𝜀inner loop = 0.00001, a cut threshold of 0.925, and a merge
limit of 20.

Figure 18. For the Moai 𝜆 test, all parameters except 𝜆 were kept
the same as in the Moai subfigure of Figure 15.

Figure 19. The segmentation for the Cow used 𝜆 = 0.35, 𝛼 =

1000, 𝜀init = 0.1, 𝜀end = 0.0001, 𝜀inner loop = 0.0001, a cut thresh-
old of 0.95, and merge limit 4. The segmentation for the Stravin-
sky Fountain character used 𝜆 = 2, 𝛼 = 10000, 𝜀init = 0.1, 𝜀end =

0.0001, 𝜀inner loop = 0.0001, as well as a cut threshold of 0.95 and a
merge threshold of 4.

Figure 20. The Cubesphere and UV Sphere both ran for 250 itera-
tions at fidelity weight 500.

G SUPPLEMENTAL MATHEMATICA CALCULATIONS
A supplemental file is attached to this work giving the formula for
the (intrinsic) distances and vector entries between a face’s centroid
and its adjacent faces’ centroids as computed in Mathematica from
only the edge lengths of a generic triangle.
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