
Sharpening and Sparsifying with Surface Hessians SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

SUPPLEMENTAL MATERIAL

A DETAILED DERIVATION OF OPERATORS
Our Hessian operator consists of 4 matrices which are multiplied
together. The first just represents the gradient on faces, in the in-
trinsic orthonormal basis with x̂ pointing along the edge between
edge 𝑖 𝑗 :

(Gu) 𝑓 =

(−1
𝑙𝑖 𝑗

𝑢𝑖 + 1
𝑙𝑖 𝑗
𝑢 𝑗

𝑙𝑘𝑖 cos𝜃𝑖−𝑙𝑖 𝑗
𝑙𝑖 𝑗 𝑙𝑘𝑖 sin𝜃𝑖 𝑢𝑖 − cos𝜃𝑖

𝑙𝑖 𝑗 sin𝜃𝑖 𝑢 𝑗 +
1

𝑙𝑘𝑖 sin𝜃𝑖 𝑢𝑘

)
, (28)

where the face 𝑓 has vertices 𝑖, 𝑗, 𝑘 , and 𝜃𝑖 is the tip angle at vertex
𝑖 .

The second matrix takes differences of the previously-found gra-
dients across a halfedge between the two faces. Explicitly, if 𝜃 𝑓𝑖 ,𝑓𝑗 is
the angle the basis at face 𝑓 would need to be rotated by to align
with the basis at face 𝑓𝑗 , the halfedge ℎ𝑖 𝑗 (on 𝑓𝑖 corresponding to
the edge shared between 𝑓𝑖 and 𝑓𝑗) gets the matrix entries

(C)ℎ𝑖 𝑗 ,𝑓𝑗 =
[
R(𝜃)

]
(C)ℎ𝑖 𝑗 ,𝑓𝑖 =

[
−I2×2

] (29)

The third matrix divides the previous difference by the length of
the dual edge between two centroids and performs a tensor product.
Let e.g. 𝑡𝑖 𝑗,𝑥 correspond to the 𝑥 entry of the unit vector pointing
from the centroid of 𝑓 to the centroid at the face across halfedge 𝑖 𝑗
in triangle 𝑓 , and 𝑙★

𝑖 𝑗
correspond to the intrinsic distance between

these centroids. Additionally, let e.g. 𝑐𝑖 𝑗,𝑥 correspond to the 𝑥 entry
in the difference taken over halfedge 𝑖 𝑗 in face 𝑓 . Then

(T)𝑓 (𝑐)𝑓 =

©­­­«
𝑇𝑥𝑥
𝑇𝑥𝑦
𝑇𝑦𝑥
𝑇𝑦𝑦

ª®®®¬𝑓
(𝑐)𝑓 =

(
𝑇1 | 𝑇2 | 𝑇3 | 𝑇4 | 𝑇5 | 𝑇6

) ©­­­­­­­«

𝑐 𝑗𝑘,𝑥
𝑐 𝑗𝑘,𝑦
𝑐𝑘𝑖,𝑥
𝑐𝑘𝑖,𝑦
𝑐𝑖 𝑗,𝑥
𝑐𝑖 𝑗,𝑦

ª®®®®®®®¬𝑓
with

𝑇1 =

(1
𝑙★
𝑗𝑘

𝑡3
𝑗𝑘,𝑥

1
𝑙★
𝑗𝑘

𝑡2
𝑗𝑘,𝑥

𝑡 𝑗𝑘,𝑦
1
𝑙★
𝑗𝑘

𝑡2
𝑗𝑘,𝑥

𝑡 𝑗𝑘,𝑦
1
𝑙★
𝑗𝑘

𝑡 𝑗𝑘,𝑥 𝑡
2
𝑗𝑘,𝑦

)⊺
𝑇2 =

(1
𝑙★
𝑗𝑘

𝑡2
𝑗𝑘,𝑥

𝑡 𝑗𝑘,𝑦
1
𝑙★
𝑗𝑘

𝑡 𝑗𝑘,𝑥 𝑡
2
𝑗𝑘,𝑦

1
𝑙★
𝑗𝑘

𝑡 𝑗𝑘,𝑥 𝑡
2
𝑗𝑘,𝑦

1
𝑙★
𝑗𝑘

𝑡3
𝑗𝑘,𝑦

)⊺
𝑇3 =

(1
𝑙★
𝑘𝑖

𝑡3
𝑘𝑖,𝑥

1
𝑙★
𝑘𝑖

𝑡2
𝑘𝑖,𝑥

𝑡𝑘𝑖,𝑦
1
𝑙★
𝑘𝑖

𝑡2
𝑘𝑖,𝑥

𝑡𝑘𝑖,𝑦
1
𝑙★
𝑘𝑖

𝑡𝑘𝑖,𝑥 𝑡
2
𝑘𝑖,𝑦

)⊺
𝑇4 =

(1
𝑙★
𝑘𝑖

𝑡2
𝑘𝑖,𝑥

𝑡𝑘𝑖,𝑦
1
𝑙★
𝑘𝑖

𝑡𝑘𝑖,𝑥 𝑡
2
𝑘𝑖,𝑦

1
𝑙★
𝑘𝑖

𝑡𝑘𝑖,𝑥 𝑡
2
𝑘𝑖,𝑦

1
𝑙★
𝑘𝑖

𝑡3
𝑘𝑖,𝑦

)⊺
𝑇5 =

(1
𝑙★
𝑖 𝑗

𝑡3
𝑖 𝑗,𝑥

1
𝑙★
𝑖 𝑗

𝑡2
𝑖 𝑗,𝑥

𝑡𝑖 𝑗,𝑦
1
𝑙★
𝑖 𝑗

𝑡2
𝑖 𝑗,𝑥

𝑡𝑖 𝑗,𝑦
1
𝑙★
𝑖 𝑗

𝑡𝑖 𝑗,𝑥 𝑡
2
𝑖 𝑗,𝑦

)⊺
𝑇6 =

(1
𝑙★
𝑖 𝑗

𝑡2
𝑖 𝑗,𝑥

𝑡𝑖 𝑗,𝑦
1
𝑙★
𝑖 𝑗

𝑡𝑖 𝑗,𝑥 𝑡
2
𝑖 𝑗,𝑦

1
𝑙★
𝑖 𝑗

𝑡𝑖 𝑗,𝑥 𝑡
2
𝑖 𝑗,𝑦

1
𝑙★
𝑖 𝑗

𝑡3
𝑖 𝑗,𝑦

)⊺
The fourth matrixM𝐹 is a matrix containing facewise areas, re-

peated 4 times for each face.
Then the four intrinsic Hessian entries corresponding to a func-

tion u are given by the entries of

Hu = M𝐹TCGu (30)

Each matrix entry corresponding to boundary halfedges is zeroed
out.

B FLAT 𝐿1 HESSIAN BOUNDARY CONDITIONS IN 2D
Here, we derive the boundary conditions for the 𝐿1 Hessian in a
(nice enough) subset Ω of R2, assuming ∥𝐻𝑢∥𝐹 ≠ 0. We start with
Equation (12), partially converting it to indices:∫

Ω

1
∥𝐻𝑢∥𝐹

𝜕𝑖 𝜕𝑗𝑢 · 𝜕𝑖 𝜕𝑗𝜂 𝑑𝑥 = 0 . (31)

Integrating by parts twice (once in 𝑖 and once in 𝑗) yields∫
𝜕Ω

1
∥𝐻𝑢∥𝐹

n⊺ (𝐻𝑢) (∇𝜂) − 𝜂 ·
(
∇ · 𝐻𝑢

∥𝐻𝑢∥𝐹

)
· n𝑑𝑆

+
∫
Ω
𝜂 · 𝐻∗

(
𝐻𝑢

∥𝐻𝑢∥𝐹

)
𝑑𝑥 = 0 .

(32)

The integration over Ω is precisely the interior pointwise condi-
tion given in Equation (13). Here we focus on understanding the
boundary terms using two characteristic types of variation 𝜂, and
subsequently drop the last term from (32).

B.1 Case 1: Variation is zero on 𝜕Ω and ∇𝜂 ∝ n
First, we consider variations which are zero on the boundary, but
which only have gradient in the normal direction. Such variations
satisfy ∇𝜂 = 𝑔n where 𝑔 is a scalar function. The boundary integra-
tion becomes∫

𝜕Ω

1
∥𝐻𝑢∥𝐹

n⊺ (𝐻𝑢) (𝑔n) − 0 ·
(
∇ · 𝐻𝑢

∥𝐻𝑢∥𝐹

)
· n𝑑𝑆 = 0 (33)

and, since 𝑔 is arbitrary,
n⊺ (𝐻𝑢)n = 0 . (34)

This is the same condition as appears in the 𝐿2 scenario of Stein
et al. [2018b].

B.2 Case 2: Variation is nonzero on 𝜕Ω and ∇𝜂 ∝ t
In this case, the variation is nonzero on the boundary, and we also
impose that the gradient of the variation is proportional to the
tangent vector (∇𝜂 = (∇𝜂 · t)twhere t is unit length), and we impose
the integrability condition

∮
𝜕Ω ∇𝜂 · t𝑑𝑆 = 0 (∇𝜂 · t is continuous on

the boundary). In coordinates, this gives∫
𝜕Ω

(
1

∥𝐻𝑢∥𝐹
n⊺ (𝐻𝑢)t

)
(t𝑖 · 𝜕𝑖𝜂) −𝜂 ·

(
∇ · 𝐻𝑢

∥𝐻𝑢∥𝐹

)
·n𝑑𝑆 = 0 . (35)

Integration by parts on the leftmost term (a line integral on the
boundary, where the derivative is t · ∇) results in an integral over
𝜕𝜕Ω (the empty set) and an integral over 𝜕Ω,

−
∫
𝜕Ω

𝜂 ·
(
∇

(
t⊺

𝐻𝑢

∥𝐻𝑢∥𝐹
n
)
· t +

(
∇ · 𝐻𝑢

∥𝐻𝑢∥𝐹

)
· n

)
𝑑𝑆 = 0 . (36)

Finally, to convert this to a pointwise boundary condition, it re-
mains to give a class of variations which satisfy ∇𝜂 = (∇𝜂 · t)t and∮
𝜕Ω ∇𝜂 · t𝑑𝑆 = 0 and which converge to a point measure at some

boundary point 𝑥0. Let 𝜂 be a smooth positive bump function on 𝜕Ω
which is compactly supported in a ball of radius ℎ around 𝑥0 and
which integrates to 1 over 𝜕Ω; its gradient automatically fulfills the
integrability condition. We extend 𝜂 into the domain by keeping it
constant in the inward normal direction over a small enough thick-
ening of the boundary, and then by smoothly filling the interior of
the domain from the inner boundary of this strip. This variation is

1

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Dylan Rowe, Alec Jacobson, and Oded Stein

within the class of variations we have restricted ourselves to (even
for arbitrarily small support around 𝑥0), and still satisfies Equation
(36). So, pointwise,

∇
(
t⊺

𝐻𝑢

∥𝐻𝑢∥𝐹
n
)
· t +

(
∇ · 𝐻𝑢

∥𝐻𝑢∥𝐹

)
· n = 0 . (37)

This condition is similar to the 𝐿2 scenario of Stein et al. [2018b],
with the difference of an additional denominator appearing.

C COMPUTING MODES
To compute the modes in Fig. 5, we alternate between

u𝑖 ← argmin
u

1
2u
⊺Lu + 𝜇∥Hu∥

s.t.u⊺
𝑖
Mu = 0 ∀𝑗 < 𝑖

c⊺
𝑖−1Mu = 1 , and

c𝑖 ←
u𝑖√︃

u⊺
𝑖
Mu𝑖

(38)

until convergence, where c0 is initialized randomly, and 𝜇 = 1000000.
To find modes of the 𝐿2 energy, we apply eigsh [Virtanen et al. 2020]
to the 𝐿2 matrix of Stein et al. [2018b].

D TRANSFORMING THE OPTIMIZATION PROBLEM
INTO CONIC FORM

To optimize (21), we rearrange it into the form

argmin
u
∥Hu∥𝜑,1 + 𝛼u⊺Mu − 2u⊺0 Mu s.t. Au = b , (39)

where H is a matrix mapping u to its four intrinsic Hessian entries,
and M is the (Voronoi) lumped mass matrix of Ω (see Supplemental
Material A). The norm ∥ · ∥𝜑,1 corresponds to taking the standard
Euclidean norm (not the squared norm) of the vector with the four
entries corresponding to each face, and then summing the norms
over all faces. The nonlinear terms in the objective can be rewritten
as standard conic problem constraints by introducing variables 𝑟 =
2𝛼u⊺Mu and z = ∥(Hu) |𝑓 ∥ (where |𝑓 represents taking the 4 entries
of our linear Hessian operator that correspond to face 𝑓), and by
Cholesky decomposing 2𝛼M = LL⊺

argmin
u

1⊺z + 𝑟 − 2u⊺0 Mu

s.t.



𝐴u = b,

(z)𝑓 ≥

√√√ 4∑︁
𝑖

(
(Hu) |𝑓

)2

𝑖
∀𝑓

𝑟 ≥
∑︁
𝑗

(L⊺u)2𝑗

(40)

The objective in this problem is linear in the variables z, 𝑟 , and u,
and the constraints correspond to a linear constraint, a quadratic
conic constraint, and a rotated conic constraint respectively. It can
be efficiently solved using black-box conic solvers.

E SEGMENTATION DISCRETIZATION AND
OPTIMIZATION

We follow Weill–Duflos et al. [2023] by applying a smoothness
energy to vertex-based functions in order to minimize a face-based
quantity (𝑣). Employing the face-based DEC Laplacian matrix L
(using extrinsic distance between centroids) [Desbrun et al. 2005],
the Voronoi mass matrixM, and the diagonal matrix of face areas
M𝐹 , we discretize the functional as
A(u, v) = 𝛼 (u − u0)⊺M(u − u0) + (v2)⊺ ∥Hu∥𝜙 + 𝜆𝜀v⊺Lv+

𝜆

4𝜀 (v
⊺M𝐹 v − 2⊺M𝐹 v) 𝑑𝑥 .

(41)

where v2 is the elementwise square of v, and ∥ · ∥𝜙 represents
taking Frobenius norm over the 4 entries corresponding to a face.
In this energy functional, 𝜆 penalizes length between segmentation
regions, and 𝛼 encourages solutions to closely approximate the
original function. (41) is solved using an alternating scheme. For a
fixed 𝜀, we follow the procedure

v(𝑖+1) ← argmin
v

v⊺
(
diag(∥Hu(𝑖) ∥𝜙) + 𝜆𝜀L +

𝜆

4𝜀M𝐹

)
v − 𝜆

4𝜀 2
⊺M𝐹 v

u(𝑖+1) ← argmin
u

𝛼u⊺Mu + 1⊺ (diag(v(𝑖+1))2∥Hu∥𝜙 − 2𝛼u⊺0 Mu

before halving 𝜀 and resolving, repeating until 𝜀 is below a threshold
𝜀2. The fixed u iteration amounts to a quadratic solve in v, whereas
the fixed v iteration amounts to a conic program solve in u. To apply
the segmentation procedure to geometry, we set u to be the vertex
coodinates (x, y, z).

At last, we apply postprocessing to find a true segmentation of the
mesh elements. We first take the mean of v between the faces adja-
cent to each edge. We then cut the mesh along edges with v smaller
than some threshold. We then merge the resulting connected com-
ponents with fewer than 𝜏 faces into their neighboring components
based on a majority vote along their boundaries; 𝜏 is a hyperparam-
eter that should be chosen dependent on mesh resolution.

F PARAMETERS
Figure 1. The Cherry parameters were 𝛼ours = 6.1479 for our

energy and 𝛼𝐿1 = 16.17 for [Stein et al. 2018b] 𝐿1. The Tete seg-
mentation used the parameters 𝜆 = 0.25, 𝛼 = 1000, 𝜀init = 0.1, 𝜀end =

0.001, 𝜀inner loop = 0.00001 and used a cut threshold of 0.5 and merge
threshold 𝜏 of 20 faces.

Figure 2. The Cathedral parameters were 𝛼ours = 100 for our
energy, 𝛼𝐿2 = 0.05 for 𝐿2, 𝛼𝐿1 = 100 for [Stein et al. 2018b] 𝐿1, and
𝛼Δ1 = 25 for the 𝐿1 edge Laplacian energy.

Figure 3. The flowed cube was run for 50 iterations at fidelity
weight 100. The denoised cube ran for 10 iterations at fidelity weight
500. The hole filled cube ran for 100 iterations at fidelity weight 100.

Figure 4. For the Springer, we ran our flow for 20 iterations at
fidelity weight 500. For Koala, we ran our flow for 40 iterations at
fidelity weight 500.

Figure 5. For our compressed modes on the Square and Catenoid,
we used 𝜇 = 1000000 and 𝜀 = 5 × 10−10 for the inner loop stopping
criterion.

2

Sharpening and Sparsifying with Surface Hessians SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

Figure 7. For the Skull, we used 𝛼ours = 44.675350189208984 for
our energy,𝛼𝐿2 = 0.11566162109375 for𝐿2,𝛼𝐿1 = 78.5 for [Stein et al.
2018b] 𝐿1. For this figure, the smoothing parameters were searched
for by evaluating our optimization procedure at 5 equally spaced
points across a large starting range, then recursing on the 3-point
subinterval whose center point admitted the closest 𝐿2 solution to
the ground truth.

Figure 13. We used the authors’ command line C++ implementa-
tion of [Liu and Jacobson 2019], with a parameter 𝜆 = 1. Our Hand
ran for 43 iterations at a fidelity weight 500.

Figure 14. For Nefertiti, the fidelity parameters are set to 𝜂 = 1250
for 25 steps, 𝜂 = 500 for 10 steps, and 𝜂 = 50 for 1 step.

Figure 15. The Dodecahedron used 𝜆 = 0.3, 𝛼 = 1000, 𝜀init =

0.1, 𝜀end = 0.001, 𝜀inner loop = 0.00001, a cut threshold of 0.6, and
a merge limit of 4. The Fandisk used 𝜆 = 0.5, 𝛼 = 1000, 𝜀init =

0.1, 𝜀end = 0.01, 𝜀inner loop = 0.00001, a cut threshold of 0.305, and a
merge limit of 4. The Moai used 𝜆 = 0.1, 𝛼 = 1000, 𝜀init = 0.1, 𝜀end =

0.0001, 𝜀inner loop = 0.00001, a cut threshold of 0.7, and a merge limit
of 30.

Figure 16. The Horseshoe flowed for 80 iterations at a fidelity
weight 100. Evora flowed for 40 iterations at a fidelity weight 1000.

Figure 17. The Building used 𝜆 = 0.03, 𝛼 = 0.5, 𝜀init = 0.1, 𝜀end =

0.001, 𝜀inner loop = 0.00001, a cut threshold of 0.925, and a merge
limit of 20.

Figure 18. For the Moai 𝜆 test, all parameters except 𝜆 were kept
the same as in the Moai subfigure of Figure 15.

Figure 19. The segmentation for the Cow used 𝜆 = 0.35, 𝛼 =

1000, 𝜀init = 0.1, 𝜀end = 0.0001, 𝜀inner loop = 0.0001, a cut thresh-
old of 0.95, and merge limit 4. The segmentation for the Stravin-
sky Fountain character used 𝜆 = 2, 𝛼 = 10000, 𝜀init = 0.1, 𝜀end =

0.0001, 𝜀inner loop = 0.0001, as well as a cut threshold of 0.95 and a
merge threshold of 4.

Figure 20. The Cubesphere and UV Sphere both ran for 250 itera-
tions at fidelity weight 500.

G SUPPLEMENTAL MATHEMATICA CALCULATIONS
A supplemental file is attached to this work giving the formula for
the (intrinsic) distances and vector entries between a face’s centroid
and its adjacent faces’ centroids as computed in Mathematica from
only the edge lengths of a generic triangle.

3

